extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2×C42)⋊1C4 = C24.46D4 | φ: C4/C1 → C4 ⊆ Aut C2×C42 | 32 | | (C2xC4^2):1C4 | 128,16 |
(C2×C42)⋊2C4 = C24.169C23 | φ: C4/C1 → C4 ⊆ Aut C2×C42 | 32 | | (C2xC4^2):2C4 | 128,552 |
(C2×C42)⋊3C4 = C24.6D4 | φ: C4/C1 → C4 ⊆ Aut C2×C42 | 32 | | (C2xC4^2):3C4 | 128,125 |
(C2×C42)⋊4C4 = C2×C4.9C42 | φ: C4/C1 → C4 ⊆ Aut C2×C42 | 32 | | (C2xC4^2):4C4 | 128,462 |
(C2×C42)⋊5C4 = C24.162C23 | φ: C4/C1 → C4 ⊆ Aut C2×C42 | 32 | | (C2xC4^2):5C4 | 128,472 |
(C2×C42)⋊6C4 = C4×C23⋊C4 | φ: C4/C1 → C4 ⊆ Aut C2×C42 | 32 | | (C2xC4^2):6C4 | 128,486 |
(C2×C42)⋊7C4 = C24.167C23 | φ: C4/C1 → C4 ⊆ Aut C2×C42 | 32 | | (C2xC4^2):7C4 | 128,531 |
(C2×C42)⋊8C4 = (C2×C42)⋊C4 | φ: C4/C1 → C4 ⊆ Aut C2×C42 | 16 | 4 | (C2xC4^2):8C4 | 128,559 |
(C2×C42)⋊9C4 = C2×C42⋊C4 | φ: C4/C1 → C4 ⊆ Aut C2×C42 | 16 | | (C2xC4^2):9C4 | 128,856 |
(C2×C42)⋊10C4 = C2×C42⋊3C4 | φ: C4/C1 → C4 ⊆ Aut C2×C42 | 32 | | (C2xC4^2):10C4 | 128,857 |
(C2×C42)⋊11C4 = C4⋊Q8⋊29C4 | φ: C4/C1 → C4 ⊆ Aut C2×C42 | 16 | 4 | (C2xC4^2):11C4 | 128,858 |
(C2×C42)⋊12C4 = C4×C2.C42 | φ: C4/C2 → C2 ⊆ Aut C2×C42 | 128 | | (C2xC4^2):12C4 | 128,164 |
(C2×C42)⋊13C4 = C24.624C23 | φ: C4/C2 → C2 ⊆ Aut C2×C42 | 128 | | (C2xC4^2):13C4 | 128,166 |
(C2×C42)⋊14C4 = C2×C42⋊4C4 | φ: C4/C2 → C2 ⊆ Aut C2×C42 | 128 | | (C2xC4^2):14C4 | 128,999 |
(C2×C42)⋊15C4 = C2×C42⋊5C4 | φ: C4/C2 → C2 ⊆ Aut C2×C42 | 128 | | (C2xC4^2):15C4 | 128,1014 |
(C2×C42)⋊16C4 = C24.625C23 | φ: C4/C2 → C2 ⊆ Aut C2×C42 | 128 | | (C2xC4^2):16C4 | 128,167 |
(C2×C42)⋊17C4 = C2×C42⋊6C4 | φ: C4/C2 → C2 ⊆ Aut C2×C42 | 32 | | (C2xC4^2):17C4 | 128,464 |
(C2×C42)⋊18C4 = C2×C4×C4⋊C4 | φ: C4/C2 → C2 ⊆ Aut C2×C42 | 128 | | (C2xC4^2):18C4 | 128,1001 |
(C2×C42)⋊19C4 = C4×C42⋊C2 | φ: C4/C2 → C2 ⊆ Aut C2×C42 | 64 | | (C2xC4^2):19C4 | 128,1002 |
(C2×C42)⋊20C4 = C2×C42⋊8C4 | φ: C4/C2 → C2 ⊆ Aut C2×C42 | 128 | | (C2xC4^2):20C4 | 128,1013 |
(C2×C42)⋊21C4 = C23.165C24 | φ: C4/C2 → C2 ⊆ Aut C2×C42 | 64 | | (C2xC4^2):21C4 | 128,1015 |
(C2×C42)⋊22C4 = C2×C42⋊9C4 | φ: C4/C2 → C2 ⊆ Aut C2×C42 | 128 | | (C2xC4^2):22C4 | 128,1016 |
(C2×C42)⋊23C4 = C23.167C24 | φ: C4/C2 → C2 ⊆ Aut C2×C42 | 64 | | (C2xC4^2):23C4 | 128,1017 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2×C42).1C4 = C42.4Q8 | φ: C4/C1 → C4 ⊆ Aut C2×C42 | 32 | | (C2xC4^2).1C4 | 128,17 |
(C2×C42).2C4 = C42.42D4 | φ: C4/C1 → C4 ⊆ Aut C2×C42 | 32 | | (C2xC4^2).2C4 | 128,196 |
(C2×C42).3C4 = (C22×C4).276D4 | φ: C4/C1 → C4 ⊆ Aut C2×C42 | 32 | | (C2xC4^2).3C4 | 128,554 |
(C2×C42).4C4 = C42⋊1C8 | φ: C4/C1 → C4 ⊆ Aut C2×C42 | 32 | | (C2xC4^2).4C4 | 128,6 |
(C2×C42).5C4 = (C2×D4)⋊C8 | φ: C4/C1 → C4 ⊆ Aut C2×C42 | 32 | | (C2xC4^2).5C4 | 128,50 |
(C2×C42).6C4 = (C2×C42).C4 | φ: C4/C1 → C4 ⊆ Aut C2×C42 | 32 | | (C2xC4^2).6C4 | 128,51 |
(C2×C42).7C4 = C22.M5(2) | φ: C4/C1 → C4 ⊆ Aut C2×C42 | 64 | | (C2xC4^2).7C4 | 128,54 |
(C2×C42).8C4 = C42⋊C8 | φ: C4/C1 → C4 ⊆ Aut C2×C42 | 32 | | (C2xC4^2).8C4 | 128,56 |
(C2×C42).9C4 = C42⋊3C8 | φ: C4/C1 → C4 ⊆ Aut C2×C42 | 32 | | (C2xC4^2).9C4 | 128,57 |
(C2×C42).10C4 = C42.C8 | φ: C4/C1 → C4 ⊆ Aut C2×C42 | 16 | 4 | (C2xC4^2).10C4 | 128,59 |
(C2×C42).11C4 = C42.2C8 | φ: C4/C1 → C4 ⊆ Aut C2×C42 | 32 | | (C2xC4^2).11C4 | 128,107 |
(C2×C42).12C4 = M5(2)⋊C4 | φ: C4/C1 → C4 ⊆ Aut C2×C42 | 64 | | (C2xC4^2).12C4 | 128,109 |
(C2×C42).13C4 = (C2×Q8).Q8 | φ: C4/C1 → C4 ⊆ Aut C2×C42 | 32 | | (C2xC4^2).13C4 | 128,126 |
(C2×C42).14C4 = C42.371D4 | φ: C4/C1 → C4 ⊆ Aut C2×C42 | 32 | | (C2xC4^2).14C4 | 128,190 |
(C2×C42).15C4 = C23.8M4(2) | φ: C4/C1 → C4 ⊆ Aut C2×C42 | 32 | | (C2xC4^2).15C4 | 128,191 |
(C2×C42).16C4 = C42.394D4 | φ: C4/C1 → C4 ⊆ Aut C2×C42 | 64 | | (C2xC4^2).16C4 | 128,193 |
(C2×C42).17C4 = C23⋊M4(2) | φ: C4/C1 → C4 ⊆ Aut C2×C42 | 32 | | (C2xC4^2).17C4 | 128,197 |
(C2×C42).18C4 = C42.44D4 | φ: C4/C1 → C4 ⊆ Aut C2×C42 | 64 | | (C2xC4^2).18C4 | 128,199 |
(C2×C42).19C4 = C23.15C42 | φ: C4/C1 → C4 ⊆ Aut C2×C42 | 32 | | (C2xC4^2).19C4 | 128,474 |
(C2×C42).20C4 = C4×C4.10D4 | φ: C4/C1 → C4 ⊆ Aut C2×C42 | 64 | | (C2xC4^2).20C4 | 128,488 |
(C2×C42).21C4 = C42.97D4 | φ: C4/C1 → C4 ⊆ Aut C2×C42 | 64 | | (C2xC4^2).21C4 | 128,533 |
(C2×C42).22C4 = C2×C16⋊C4 | φ: C4/C1 → C4 ⊆ Aut C2×C42 | 32 | | (C2xC4^2).22C4 | 128,841 |
(C2×C42).23C4 = C2×C42.C4 | φ: C4/C1 → C4 ⊆ Aut C2×C42 | 32 | | (C2xC4^2).23C4 | 128,862 |
(C2×C42).24C4 = C2×C42.3C4 | φ: C4/C1 → C4 ⊆ Aut C2×C42 | 32 | | (C2xC4^2).24C4 | 128,863 |
(C2×C42).25C4 = (C2×D4).135D4 | φ: C4/C1 → C4 ⊆ Aut C2×C42 | 16 | 4 | (C2xC4^2).25C4 | 128,864 |
(C2×C42).26C4 = C8.5M4(2) | φ: C4/C1 → C4 ⊆ Aut C2×C42 | 16 | 4 | (C2xC4^2).26C4 | 128,897 |
(C2×C42).27C4 = C22.7M5(2) | φ: C4/C2 → C2 ⊆ Aut C2×C42 | 128 | | (C2xC4^2).27C4 | 128,106 |
(C2×C42).28C4 = C4×C8⋊C4 | φ: C4/C2 → C2 ⊆ Aut C2×C42 | 128 | | (C2xC4^2).28C4 | 128,457 |
(C2×C42).29C4 = C2×C22.7C42 | φ: C4/C2 → C2 ⊆ Aut C2×C42 | 128 | | (C2xC4^2).29C4 | 128,459 |
(C2×C42).30C4 = C42⋊4C8 | φ: C4/C2 → C2 ⊆ Aut C2×C42 | 128 | | (C2xC4^2).30C4 | 128,476 |
(C2×C42).31C4 = C43.C2 | φ: C4/C2 → C2 ⊆ Aut C2×C42 | 128 | | (C2xC4^2).31C4 | 128,477 |
(C2×C42).32C4 = C4×C22⋊C8 | φ: C4/C2 → C2 ⊆ Aut C2×C42 | 64 | | (C2xC4^2).32C4 | 128,480 |
(C2×C42).33C4 = C42.378D4 | φ: C4/C2 → C2 ⊆ Aut C2×C42 | 64 | | (C2xC4^2).33C4 | 128,481 |
(C2×C42).34C4 = C4×C4⋊C8 | φ: C4/C2 → C2 ⊆ Aut C2×C42 | 128 | | (C2xC4^2).34C4 | 128,498 |
(C2×C42).35C4 = C43.7C2 | φ: C4/C2 → C2 ⊆ Aut C2×C42 | 128 | | (C2xC4^2).35C4 | 128,499 |
(C2×C42).36C4 = C42.425D4 | φ: C4/C2 → C2 ⊆ Aut C2×C42 | 64 | | (C2xC4^2).36C4 | 128,529 |
(C2×C42).37C4 = C23.32M4(2) | φ: C4/C2 → C2 ⊆ Aut C2×C42 | 64 | | (C2xC4^2).37C4 | 128,549 |
(C2×C42).38C4 = C42⋊5C8 | φ: C4/C2 → C2 ⊆ Aut C2×C42 | 128 | | (C2xC4^2).38C4 | 128,571 |
(C2×C42).39C4 = C2×C16⋊5C4 | φ: C4/C2 → C2 ⊆ Aut C2×C42 | 128 | | (C2xC4^2).39C4 | 128,838 |
(C2×C42).40C4 = C22×C8⋊C4 | φ: C4/C2 → C2 ⊆ Aut C2×C42 | 128 | | (C2xC4^2).40C4 | 128,1602 |
(C2×C42).41C4 = C42⋊6C8 | φ: C4/C2 → C2 ⊆ Aut C2×C42 | 32 | | (C2xC4^2).41C4 | 128,8 |
(C2×C42).42C4 = C42.7C8 | φ: C4/C2 → C2 ⊆ Aut C2×C42 | 32 | | (C2xC4^2).42C4 | 128,108 |
(C2×C42).43C4 = C23.28C42 | φ: C4/C2 → C2 ⊆ Aut C2×C42 | 64 | | (C2xC4^2).43C4 | 128,460 |
(C2×C42).44C4 = C42⋊8C8 | φ: C4/C2 → C2 ⊆ Aut C2×C42 | 128 | | (C2xC4^2).44C4 | 128,563 |
(C2×C42).45C4 = C42⋊9C8 | φ: C4/C2 → C2 ⊆ Aut C2×C42 | 128 | | (C2xC4^2).45C4 | 128,574 |
(C2×C42).46C4 = C4×M5(2) | φ: C4/C2 → C2 ⊆ Aut C2×C42 | 64 | | (C2xC4^2).46C4 | 128,839 |
(C2×C42).47C4 = C2×C4⋊C16 | φ: C4/C2 → C2 ⊆ Aut C2×C42 | 128 | | (C2xC4^2).47C4 | 128,881 |
(C2×C42).48C4 = C4⋊M5(2) | φ: C4/C2 → C2 ⊆ Aut C2×C42 | 64 | | (C2xC4^2).48C4 | 128,882 |
(C2×C42).49C4 = C2×C8.C8 | φ: C4/C2 → C2 ⊆ Aut C2×C42 | 32 | | (C2xC4^2).49C4 | 128,884 |
(C2×C42).50C4 = C42.13C8 | φ: C4/C2 → C2 ⊆ Aut C2×C42 | 64 | | (C2xC4^2).50C4 | 128,894 |
(C2×C42).51C4 = C42.6C8 | φ: C4/C2 → C2 ⊆ Aut C2×C42 | 64 | | (C2xC4^2).51C4 | 128,895 |
(C2×C42).52C4 = C2×C4×M4(2) | φ: C4/C2 → C2 ⊆ Aut C2×C42 | 64 | | (C2xC4^2).52C4 | 128,1603 |
(C2×C42).53C4 = C22×C4⋊C8 | φ: C4/C2 → C2 ⊆ Aut C2×C42 | 128 | | (C2xC4^2).53C4 | 128,1634 |
(C2×C42).54C4 = C2×C4⋊M4(2) | φ: C4/C2 → C2 ⊆ Aut C2×C42 | 64 | | (C2xC4^2).54C4 | 128,1635 |
(C2×C42).55C4 = C2×C42.12C4 | φ: C4/C2 → C2 ⊆ Aut C2×C42 | 64 | | (C2xC4^2).55C4 | 128,1649 |
(C2×C42).56C4 = C2×C42.6C4 | φ: C4/C2 → C2 ⊆ Aut C2×C42 | 64 | | (C2xC4^2).56C4 | 128,1650 |
(C2×C42).57C4 = C42.677C23 | φ: C4/C2 → C2 ⊆ Aut C2×C42 | 32 | | (C2xC4^2).57C4 | 128,1652 |